
ON FRACTIONAL HARDY INEQUALITIES

IN CONVEX SETS

L. BRASCO AND E. CINTI

Abstract. We prove a Hardy inequality on convex sets, for fractional Sobolev-Slobodeckĭı
spaces of order (s, p). The proof is based on the fact that in a convex set the distance
from the boundary is a superharmonic function, in a suitable sense. The result holds for
every 1 < p <∞ and 0 < s < 1, with a constant which is stable as s goes to 1.
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1. Introduction

1.1. A quick overview on Hardy inequality. Given an open set Ω ⊂ RN with Lipschitz
boundary, we will use the notation

dΩ(x) :=

{
inf
y∈∂Ω

|x− y|, if x ∈ Ω,

0, if x ∈ RN \ Ω.

A fundamental result in the theory of Sobolev spaces is the Hardy inequality

(1.1) CΩ

ˆ
Ω

|u|2

d2
Ω

dx ≤
ˆ

Ω
|∇u|2 dx, for every u ∈ C∞0 (Ω),
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see for example [16, Theorem 21.3]. It is well-known that for a convex set K ⊂ RN , such
an inequality holds with the dimension-free universal constant

CK =
1

4
,

see for example [6, Theorem 2]. Moreover, such a constant is sharp. In order to explain
the aims and techniques of the present paper, it is useful to recall a proof of this fact.

A very elegant way of proving (1.1) with sharp constant for convex sets, consists in
mimicking Moser’s logarithmic estimate for positive supersolutions of elliptic partial dif-
ferential equations. The starting point is the observation that on a convex set K we have
−∆dK ≥ 0, i.e. the distance function is superharmonic. More precisely, it holds

(1.2)

ˆ
K
〈∇dK ,∇ϕ〉 dx ≥ 0, for every nonnegative ϕ ∈ C∞0 (K).

By following Moser (see [15, page 586]), we can test the equation (1.2) with

ϕ =
u2

dK
,

where u ∈ C∞0 (K). This gives

2

ˆ
K

〈
∇dK
dK

,∇u
〉
u dx−

ˆ
K

∣∣∣∣∇dKdK
∣∣∣∣2 u2 dx ≥ 0,

that is ˆ
K

∣∣∣∣∇dKdK
∣∣∣∣2 u2 dx ≤ 2

ˆ
K

〈
∇dK
dK

,∇u
〉
u dx.

We now use Young’s inequality

〈a, b〉 ≤ |a|
2

2
+
|b|2

2
, a, b ∈ RN ,

with the following choices

a =
√
δ
∇dK
dK

u and b =
1√
δ
∇u,

where δ is an arbitrary positive real number. This leads toˆ
K

∣∣∣∣∇dKdK
∣∣∣∣2 u2 dx ≤ δ

ˆ
K

∣∣∣∣∇dKdK
∣∣∣∣2 u2 dx+

1

δ

ˆ
K
|∇u|2 dx,

which can be recast as

δ (1− δ)
ˆ
K

∣∣∣∣∇dKdK
∣∣∣∣2 u2 dx ≤

ˆ
K
|∇u|2 dx.

It is now sufficient to observe that the term δ (1 − δ) in the left-hand side is maximal for
δ = 1/2. This leads to the Hardy inequality with the claimed sharp constant 1/4, once it
is observed that

|∇dK | = 1, a. e. in K.
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The latter implies that more generally for every 1 < p <∞ we have −∆p dK ≥ 0 in K, i.e.
dK is p−superharmonic in the following senseˆ

K
〈|∇dK |p−2∇dK ,∇ϕ〉 dx ≥ 0, for every nonnegative ϕ ∈ C∞0 (K).

By testing this with ϕ = |u|p/dp−1
K and suitably adapting the proof above, one can prove

the more general Hardy inequality for convex sets

(1.3)

(
p− 1

p

)p ˆ
K

|u|p

dpK
dx ≤

ˆ
K
|∇u|p dx.

Once again, the constant appearing in (1.3) is sharp and independent of both K and the
dimension N .

1.2. Main result. The scope of the present paper is to prove a fractional version of
Hardy inequality for convex sets, by adapting to the fractional setting the Moser-type
proof presented above. As essential feature of our method is that the relevant constant
appearing in the Hardy inequality is stable as the fractional order of differentiability s
converges to 1, see Remark 1.3 below. More precisely, we prove the following

Theorem 1.1 (Hardy inequality on convex sets). Let 1 < p < ∞ and 0 < s < 1. Let
K ⊂ RN be an open convex set such that K 6= RN . Then for every u ∈ C∞0 (K) we have

(1.4)
C sp

1− s

ˆ
K

|u|p

ds pK
dx ≤

¨
RN×RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy,

for an explicit constant C = C(N, p) > 0 (see Remark 4.1 below).

The proof of Theorem 1.1 is based on the fact that for every 0 < s < 1 and 1 < p <∞
we have in weak sense

(−∆p)
sdsK ≥ 0 in K,

where (−∆p)
s is the fractional p−Laplacian of order s. In other words, the function dsK is

(s, p)−superharmonic in the following sense (see Proposition 3.2 below)¨
RN×RN

|dK(x)s − dK(y)s|p−2 (dK(x)s − dK(y)s)
(
ϕ(x)− ϕ(y)

)
|x− y|N+s p

dx dy ≥ 0,

for every nonnegative and smooth function ϕ, with compact support in K. Then we will

test this inequality with ϕ = |u|p/ds (p−1)
K .

As in the local case, this trick is an essential feature in order to prove BMO regularity
of the logarithm of positive supersolutions to the fractional p−Laplacian. This in turn is
a crucial step in the proof of Hölder continuity of solutions to equations involving (−∆p)

s.
In this respect, this idea has already been exploited by Di Castro, Kuusi and Palatucci
in [7, Lemma 1.3] (see also [12, Lemma 3.4] for the case p = 2). However, we observe
that the computations in [7, Lemma 1.3] do not lead to the desired Hardy inequality, due
to a lack of symmetry in x and y. For this, we need finer algebraic manipulations and a
subtler pointwise inequality: these are contained in Lemma A.5, which is one of the main
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ingredient of the proof of Theorem 1.1. We refer to Remark A.6 below for a more detailed
discussion on this point.

Remark 1.2 (Comparison with known results). The quest for fractional Hardy inequalities
is certainly not new. In this respect, we would like to mention that in [8, Theorem 1.1] it
is proved the following version

(1.5) CΩ

ˆ
Ω

|u|p

ds pΩ

dx ≤
¨

Ω×Ω

|u(x)− u(y)|p

|x− y|N+s p
dx dy, for every u ∈ C∞0 (Ω),

under suitable assumptions on the open Lipschitz set Ω ⊂ RN and some restrictions on the
product s p, see also [9, Corollary 3].

Observe that in the right-hand side of (1.5), the fractional Sobolev seminorm is now
computed on Ω × Ω, rather than on the whole RN × RN . However, as pointed out in [8],
such a stronger inequality fails to hold for s p ≤ 1, whenever Ω is bounded.

On the other hand, when Ω is a half-space, inequality (1.5) holds for s p 6= 1. In this
case, the sharp constant has been computed by Bogdan and Dyda in [1, Theorem 1] for
p = 2 and by Frank and Seiringer in [10, Theorem 1.1] for a general 1 < p < ∞. We also
mention that when s p > 1 and Ω ⊂ RN is an open convex set, inequality (1.5) with sharp
constant (which is the same as in the half-space) has been proved by Loss and Sloane in
[13, Theorem 1.2].

We point out that our proof is different from that of the aforementioned results and our
Hardy inequality (4.6) holds without any restriction on the product s p.

The constant obtained in Theorem 1.1 is very likely not sharp. However, a couple of
comments are in order on this point.

Remark 1.3 (Asymptotic behaviour in s of the constant). We recall that if u ∈ C∞0 (K),
then we have (see [17, Corollary 1.3] and [4, Proposition 2.8])

lim
s↗1

(1− s)
¨

RN×RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy = αN,p

ˆ
K
|∇u|p dx,

with

αN,p =
1

p

ˆ
SN−1

|〈ω, e1〉|p dHN−1(ω), e1 = (1, 0, . . . , 0).

In this respect, we observe that the constant appearing in Theorem 1.1 has the correct
asymptotic behaviour as s converges to 1: by passing to the limit in (4.6) as s goes to 1,
we obtain the usual local Hardy inequality

(1.6) C
ˆ
K

|u|p

dpK
dx ≤ αN,p

ˆ
K
|∇u|p dx.

As for the limit s↘ 0, we recall that (see [14, Theorem 3])

lim
s↘0

s

¨
RN×RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy = βN,p

ˆ
K
|u|p dx,
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with

βN,p =
2N ωN
p

,

and ωN is the volume of the N−dimensional unit ball. Thus, in this case, our constant
in (4.6) does not exhibit the correct asymptotic behaviour as s converges to 0. However,
in this case there is an easy proof of the Hardy inequality based on geometric arguments,
which produces the correct behaviour of the constant as s goes to 0 (but not as s goes to
1, of course), see Proposition 4.2 below.

Remark 1.4 (Dependence on N of C). At a first glance, it may look strange that the
constant C in Theorem 1.1 depends on N . Indeed, we have seen in (1.3) that in the local
case such an inequality holds with the universal constant(

p− 1

p

)p
.

However, it is easily seen that C must depend on N in the fractional case. Indeed, we
have already seen that passing to the limit in (4.6) as s goes to 1, we obtain the local
Hardy inequality (1.6). As we already said, the sharp constant in the previous inequality
is (p− 1/p)p, which means that we must have

C ≤
(
p− 1

p

)p
αN,p, for every N ≥ 1.

On the other hand, it is easily seen that αN,p converges to 0 as N goes∞. This shows that
C in (4.6) must depend on N .

We conclude this introduction with some consequences of Theorem 1.1. For an open set
Ω ⊂ RN we define the homogeneous Sobolev-Slobodeckĭı space Ds,p0 (Ω) as the completion of
C∞0 (Ω) with respect to the norm

u 7→
(¨

RN×RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy

) 1
p

.

Then Hardy inequality (4.6) implies that when K 6= RN is an open convex set, the space
Ds,p0 (K) is a functional one. In this case, inequality (4.6) automatically extends to functions
in Ds,p0 (K).

Moreover, as a straightforward consequence of Theorem 1.1, we have the following

Corollary 1.5. Let 1 < p < ∞ and 0 < s < 1. Let K ⊂ RN be an open convex set such
that

RK = sup
x∈K

dK(x) < +∞.

Then we have the continuous embedding Ds,p0 (K) ↪→ Lp(K). Moreover, if we set

λs1,p(K) := inf
u∈C∞0 (K)

{
[u]p

W s,p(RN )
:

ˆ
K
|u|p dx = 1

}
,



6 BRASCO AND CINTI

it holds
C sp

1− s
R−s pK ≤ λs1,p(K),

where C is the same constant as in Theorem 1.1.

The quantity RK above is called inradius of K. Observe that this is the radius of the
largest ball contained in K.

Remark 1.6 (Poincaré inequality for sets bounded in one direction). Let ω0 ∈ SN−1 and
`1, `2 ∈ R with `1 < `2. For every open set Ω ⊂ RN (not necessarily bounded) contained in
the slab S = {x ∈ RN : `1 < 〈x, ω0〉 < `2}, as a consequence of Corollary 1.5, we also get

C sp

1− s

(
`2 − `1

2

)−s p
≤ λs1,p(Ω).

Indeed, it is sufficient to observe that λs1,p(Ω) ≥ λs1,p(S) and then use Corollary 1.5 for the

convex set S, for which RS = (`2 − `1)/2.

1.3. Plan of the paper. We start with Section 2, containing the main notations, defini-
tions and some technical results. In this part, the main point is Proposition 2.5. In Section
3 we show that, in a convex set K, the distance function dK raised to the power s is
(s, p)−superharmonic, see Proposition 3.2. Finally, the proof of Theorem 1.1 is contained
in Section 4. The paper is complemented with an Appendix, containing some pointwise
inequalities which are crucially exploited in the proof of our main result.

Acknowledgments. We wish to thank Guido De Philippis for suggesting us the elegant
geometric argument in the proof of Proposition 3.2. We also thank Tuomo Kuusi for a
discussion which clarified some points of his paper [7]. Bart lomiej Dyda and Rupert L.
Frank made some useful comments on a preliminary version of the paper, we warmly thank
them.

E. Cinti is supported by the MINECO grant MTM2014-52402-C3-1-P, the ERC Ad-
vanced Grant 2013 n. 339958 Complex Patterns for Strongly Interacting Dynamical Sys-
tems - COMPAT and is part of the Catalan research group 2014 SGR 1083.

Both authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Prob-
abilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM).

2. Preliminaries

2.1. Notations. For x0 ∈ RN and R > 0, we use the standard notation

BR(x0) = {x ∈ RN : |x− x0| < R}.

For notational simplicity, for every 1 < p < ∞ we introduce the function Jp : R → R
defined by

Jp(t) = |t|p−2 t, for t ∈ R.
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We also set

Lp−1
s p (RN ) =

{
u ∈ Lp−1

loc (RN ) :

ˆ
RN

|u(x)|p−1

(1 + |x|)N+s p
dx < +∞

}
.

If Ω ⊂ RN is an open set, for every 1 < p <∞ and 0 < s < 1, we define

W s,p(Ω) = {u ∈ Lp(Ω) : [u]W s,p(Ω) < +∞},

where

[u]W s,p(Ω) =

(¨
Ω×Ω

|u(x)− u(y)|p

|x− y|N+s p
dx dy

) 1
p

.

The local version W s,p
loc (Ω) is defined in the usual way.

2.2. Functional analytic facts. We start with the following

Definition 2.1. Let 1 < p <∞ and 0 < s < 1. Let Ω ⊂ RN be an open set. We say that
u ∈W s,p

loc (Ω) ∩ Lp−1
s p (RN ) is:

• locally weakly (s, p)−superharmonic in Ω if

(2.1)

¨
RN×RN

Jp(u(x)− u(y))
(
ϕ(x)− ϕ(y)

)
|x− y|N+s p

dx dy ≥ 0,

for every nonnegative ϕ ∈W s,p(Ω) with compact support in Ω;

• locally weakly (s, p)−subharmonic in Ω if −u is (s, p)−superharmonic in Ω;

• locally weakly (s, p)−harmonic in Ω if it is both (s, p)−superharmonic
and (s, p)−subharmonic.

We observe that thanks to the assumptions on u, the double integral in (2.1) is finite
for every admissible test function.

The following simple result is quite standard, we omit the proof.

Lemma 2.2. Let Ω ⊂ RN be a bounded measurable set. Then for every u ∈ Lp−1
s p (RN ) and

r > 0 we have

sup
x∈Ω

ˆ
RN\Br(x)

|u(y)|p−1

|x− y|N+s p
dy < +∞.

The following technical result will be used in the next section.

Lemma 2.3. Let 1 < p <∞ and 0 < s < 1. Let Ω ⊂ RN be an open bounded set. Given
u ∈W s,p

loc (Ω) ∩ Lp−1
s p (RN ), ϕ ∈ Lp with compact support in Ω and ε > 0, the function

(x, y) 7→ Jp(u(x)− u(y))

|x− y|N+s p
ϕ(x),

is summable on Tε := {(x, y) ∈ RN × RN : |x− y| ≥ ε}.
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Proof. Let us call O the support of ϕ. We have¨
Tε

∣∣∣∣Jp(u(x)− u(y))

|x− y|N+s p
ϕ(x)

∣∣∣∣ dx dy
=

¨
{(x,y)∈O×RN : |x−y|≥ε}

|u(x)− u(y)|p−1

|x− y|N+s p
|ϕ(x)| dx dy

≤ ε−
N
p
−s
¨
{(x,y)∈O×O : |x−y|≥ε}

|u(x)− u(y)|p−1

|x− y|
N+s p
p′

|ϕ(x)| dx dy

+ C

¨
{(x,y)∈O×(RN\O) : |x−y|≥ε}

|u(x)|p−1 + |u(y)|p−1

|x− y|N+s p
|ϕ(x)| dx dy

≤ ε−
N
p
−s |O|

1
p

(¨
O×O

|u(x)− u(y)|p

|x− y|N+s p
dx dy

) 1
p′
(ˆ
O
|ϕ|p dx

) 1
p

+ C

¨
{(x,y)∈O×(RN\O) : |x−y|≥ε}

|u(x)|p−1 + |u(y)|p−1

|x− y|N+s p
|ϕ(x)| dx dy.

In order to treat the last integral, we observe that

{(x, y) ∈ O × (RN \ O) : |x− y| ≥ ε} ⊂ {(x, y) ∈ O × RN : |x− y| ≥ ε}.

Thus we obtain¨
{(x,y)∈O×(RN\O) : |x−y|≥ε}

|u(x)|p−1 + |u(y)|p−1

|x− y|N+s p
|ϕ(x)| dx dy

≤
ˆ
O

(ˆ
RN\Bε(x)

|u(x)|p−1 |ϕ(x)|
|x− y|N+s p

dy

)
dx

+

ˆ
O

(ˆ
RN\Bε(x)

|u(y)|p−1 |ϕ(x)|
|x− y|N+s p

dy

)
dx

≤ N ωN
s p

ε−s p
(ˆ
O
|u|p dx

) 1
p′
(ˆ
O
|ϕ|p dx

) 1
p

+

ˆ
O

(ˆ
RN\Bε(x)

|u(y)|p−1

|x− y|N+s p
dy

)
|ϕ|p dx.

We conclude by observing that

sup
x∈O

ˆ
RN\Bε(x)

|u(y)|p−1

|x− y|N+s p
dy < +∞,

thanks to the fact that u ∈ Lp−1
s p (RN ), see Lemma 2.2. �

In order to use a Moser–type argument for the proof of Theorem 1.1, we will need the
following result to guarantee that a certain test function is admissible.
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Lemma 2.4. Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ RN be an open bounded set. For
every u ∈W s,p(Ω)∩L∞(Ω) with compact support in Ω and v ∈W s,p

loc (Ω)∩L∞(Ω), we have

u v ∈W s,p(Ω).

Proof. We start by observing that with simple manipulations we have

[u v]pW s,p(Ω) ≤ 2p−1

¨
Ω×Ω

|u(x)− u(y)|p |v(x)|p

|x− y|N+s p
dx dy

+ 2p−1

¨
Ω×Ω

|v(x)− v(y)|p |u(y)|p

|x− y|N+s p
dx dy

≤ 2p−1 ‖v‖pL∞(Ω) [u]pW s,p(Ω) + 2p−1

¨
Ω×Ω

|v(x)− v(y)|p |u(y)|p

|x− y|N+s p
dx dy.

In order to estimate the last integral, we set O = supp(u) and then take O′ such that
O b O′ b Ω. We then obtain¨

Ω×Ω

|v(x)− v(y)|p |u(y)|p

|x− y|N+s p
dx dy =

¨
O′×O′

|v(x)− v(y)|p |u(y)|p

|x− y|N+s p
dx dy

+

¨
(Ω\O′)×O

|v(x)− v(y)|p |u(y)|p

|x− y|N+s p
dx dy

≤ ‖u‖pL∞(Ω) [v]pW s,p(O′)

+
2p |Ω| |O|

dist(O,Ω \ O′)N+s p
‖u‖pL∞(Ω) ‖v‖

p
L∞(Ω).

This gives the desired conclusion. �

2.3. An expedient estimate for convex sets. The following expedient result is a sort
of fractional counterpart of the identity

|∇dK | = 1 almost everywhere in K.

As explained in the Introduction, in the local case this is an essential ingredient in the
proof of the Hardy inequality for convex sets. This will play an important role in our case
as well.

Proposition 2.5. Let K ⊂ RN be an open bounded convex set. Then we haveˆ
{y∈K : dK(y)≤dK(x)}

|dK(x)− dK(y)|p

|x− y|N+s p
dy ≥ C1

1− s
dK(x)p (1−s), for a. e. x ∈ K,

where C1 = C1(N, p) > 0 is the constant

C1 =
1

p
sup

0<σ<1

[
σpHN−1

(
{ω ∈ SN−1 : 〈ω, e1〉 > σ}

)]
.

Proof. We set for simplicity δ = dK(x), thus Bδ(x) ⊂ K and we haveˆ
{y∈K : dK(y)≤dK(x)}

|dK(x)− dK(y)|p

|x− y|N+s p
dy ≥

ˆ
{y∈Bδ(x) : dK(y)≤dK(x)}

|dK(x)− dK(y)|p

|x− y|N+s p
dy.
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We now take x′ ∈ ∂K such that |x − x′| = δ. For a given 0 < σ < 1, we consider the
portion Σσ(x) of Bδ(x) defined by

Σσ(x) =

{
y ∈ Bδ(x) :

〈
y − x
|y − x|

,
x′ − x
|x′ − x|

〉
> σ

}
,

see Figure 1.

Figure 1. The set Σσ(x) and the supporting hyperplane Πx′ .

By convexity of K, it is not difficult to see that

(2.2) Σσ(x) ⊂ {y ∈ Bδ(x) : dK(y) ≤ dK(x)}, for every 0 < σ < 1.

We can be more precise on this point. We denote by Πx′ the supporting hyperplane of K
at the point x′, orthogonal to x′−x. Then for every y ∈ K, we denote by y′ the orthogonal
projection of y on Πx′ . Thus by convexity we have

dK(y) ≤ |y − y′|, for every y ∈ K.

We then observe that for every y ∈ Σσ(x), it holds

dK(x) = |x− x′| = |y − y′|+
〈
y − x
|y − x|

,
x′ − x
|x′ − x|

〉
|y − x|

≥ dK(y) + σ |y − x|.
(2.3)
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By using (2.2) and (2.3), we thus obtainˆ
{y∈K : dK(y)≤dK(x)}

|dK(x)− dK(y)|p

|x− y|N+s p
dy

≥
ˆ

Σσ(x)

|dK(x)− dK(y)|p

|x− y|N+s p
dy

≥ σp
ˆ

Σσ(x)
|x− y|p (1−s)−N dy

= σp

(ˆ
{
ω∈SN−1 :

〈
ω, x

′−x
|x′−x|

〉
>σ

} dHN−1(ω)

) ˆ δ

0
%−1+p (1−s) d%

=
f(σ)σp

(1− s) p
δp (1−s),

where f(σ) > 0 is the quantity

f(σ) =

ˆ
{ω∈SN−1 : 〈ω,e1〉>σ}

dHN−1(ω).

By arbitrariness of 0 < σ < 1, we can take the supremum and get the conclusion. �

3. Superharmonicity of the distance function

In this section we will prove that dsK in a convex set K is weakly (s, p)−superharmonic,
see Definition 2.1. We start with the case of the half-space. The proof of the following fact
can be found in [11, Lemma 3.2].

Lemma 3.1. We set HN
+ = {x ∈ RN : xN > 0}. Let 1 < p <∞ and 0 < s < 1, then dsHN+

is locally weakly (s, p)−harmonic in HN
+ . Moreover, there holds

lim
ε→0

ˆ
RN\Bε(x)

Jp(dHN+
(x)s − dHN+ (y)s)

|x− y|N+s p
dy = 0,

strongly in L1
loc(HN

+ ).

By appealing to the previous result and using the geometric properties of convex sets,
we can prove the following

Proposition 3.2. Let K ⊂ RN be an open bounded convex set. For 1 < p < ∞ and
0 < s < 1, we have that dsK is locally weakly (s, p)−superharmonic.

Proof. We first observe that dsK ∈W
s,p
loc (K)∩Lp−1

s p (RN ). Let ϕ ∈W s,p(K) be a nonnegative
function with compact support in K, we observe that the function

(x, y) 7→
Jp(dK(x)s − dK(y)s)

(
ϕ(x)− ϕ(y)

)
|x− y|N+s p

,
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is summable. Then by the Dominated Convergence Theorem, we have

¨
RN×RN

Jp(dK(x)s − dK(y)s)
(
ϕ(x)− ϕ(y)

)
|x− y|N+s p

dx dy

= lim
ε→0

¨
Tε

Jp(dK(x)s − dK(y)s)
(
ϕ(x)− ϕ(y)

)
|x− y|N+s p

dx dy,

where we set Tε = {(x, y) ∈ RN ×RN : |x−y| ≥ ε}. By Lemma 2.3 we have that for every
fixed ε, the function

(x, y) 7→ Jp(dK(x)s − dK(y)s)

|x− y|N+s p
ϕ(x),

is summable on Tε. Thus we get

¨
Tε

Jp(dK(x)s − dK(y)s)
(
ϕ(x)− ϕ(y)

)
|x− y|N+s p

dx dy

=

¨
Tε

Jp(dK(x)s − dK(y)s)

|x− y|N+s p
ϕ(x) dx dy −

¨
Tε

Jp(dK(x)s − dK(y)s)

|x− y|N+s p
ϕ(y) dx dy

= 2

ˆ
K

(ˆ
RN\Bε(x)

Jp(dK(x)s − dK(y)s)

|x− y|N+s p
dy

)
ϕ(x) dx.

In the second equality, we used Fubini’s Theorem and the fact that ϕ has compact support
contained in K. In order to conclude, we need to show that

(3.1) lim
ε→0

ˆ
K

(ˆ
RN\Bε(x)

Jp(dK(x)s − dK(y)s)

|x− y|N+s p
dy

)
ϕ(x) dx ≥ 0.

We now take x ∈ K and 0 < ε < dK(x), then we consider a point x′ ∈ ∂K such that
dK(x) = |x − x′|. We take a supporting hyperplane to K at x′, up to a rigid motion we
can suppose that this is given by {x ∈ RN : xN = 0} and that K ⊂ HN

+ . We observe that
by convexity of K

dK(y) ≤ dHN+ (y), for y ∈ RN ,

and

dK(x) = |x− x′| = dHN+
(x),

see Figure 2.
By exploiting these facts and the monotonicity of Jp, we obtain for almost every x ∈ K

lim inf
ε→0

ˆ
RN\Bε(x)

Jp(dK(x)s − dK(y)s)

|x− y|N+s p
dy ≥ lim

ε→0

ˆ
RN\Bε(x)

Jp(dHN+
(x)s − dHN+ (y)s)

|x− y|N+s p
dy = 0,
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Figure 2. The distance of y from ∂K is smaller than its distance from the hyperplane.

where the last equality follows from Lemma 3.1. By multiplying the previous inequality
by ϕ nonnegative, integrating over K and using Fatou’s Lemma, we thus obtain

lim
ε→0

ˆ
K

(ˆ
RN\Bε(x)

Jp(dK(x)s − dK(y)s)

|x− y|N+s p
dy

)
ϕ(x) dx

≥
ˆ
K

(
lim inf
ε→0

ˆ
RN\Bε(x)

Jp(dK(x)s − dK(y)s)

|x− y|N+s p
dy

)
ϕ(x) dx ≥ 0.

This proves (3.1) and thus we get the desired conclusion. �

4. Proof of Hardy inequality

4.1. Proof of Theorem 1.1. We divide the proof in two cases: first we prove the result
under the additional assumptions that K is bounded, then we extend it to general convex
sets not coinciding with the whole space.

Case 1: bounded convex sets. By Proposition 3.2 we know that

(4.1)

¨
RN×RN

Jp(dK(x)s − dK(y)s)(ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy ≥ 0,

for every nonnegative ϕ ∈W s,p(K) with compact support in K. Then we test with

ϕ =
|u|p

(dsK + ε)p−1
,

where u ∈ C∞0 (K) and ε > 0. By Lemma 2.4, we have that ϕ is admissible. Indeed,
we already know that dsK ∈ W

s,p
loc (K) ∩ L∞(K). Moreover, for every ε > 0 the function
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f(t) = (t+ ε)1−p is Lipschitz for t > 0, thus (dsK + ε)1−p = f ◦ dsK ∈W
s,p
loc (K) ∩ L∞(K) as

well.
Let us call O the support of u, then from (4.1) we have

0 ≤
¨
K×K

Jp(dK(x)s − dK(y)s)

|x− y|N+s p

(
|u(x)|p

(dK(x)s + ε)p−1
− |u(y)|p

(dK(y)s + ε)p−1

)
dx dy

+ 2

¨
O×(RN\K)

Jp(dK(x)s)

|x− y|N+s p

|u(x)|p

(dK(x)s + ε)p−1
dx dy.

(4.2)

We first observe that

(4.3)

¨
O×(RN\K)

Jp(dK(x)s)

|x− y|N+s p

|u(x)|p

(dK(x)s + ε)p−1
dx dy ≤

¨
O×(RN\K)

|u(x)|p

|x− y|N+s p
dx dy.

We now need to estimate the double integral

I :=

¨
K×K

Jp(dK(x)s − dK(y)s)

|x− y|N+s p

(
|u(x)|p

(dK(x)s + ε)p−1
− |u(y)|p

(dK(y)s + ε)p−1

)
dx dy.

For this, we crucially exploit the fundamental inequality of Lemma A.5, with the choices

a = dK(x)s + ε, b = dK(y)s + ε, c = |u(x)|, d = |u(y)|.

This entails

I ≤ −C2

¨
K×K

∣∣∣∣ dK(x)s − dK(y)s

dK(x)s + dK(y)s + 2 ε

∣∣∣∣p (|u(x)|p + |u(y)|p) dx dy

|x− y|N+s p

+ C3

¨
K×K

∣∣|u(x)| − |u(y)|
∣∣p

|x− y|N+s p
dx dy,

(4.4)

where C2 and C3 are as in Lemma A.5. By using (4.4) in (4.2), together with (4.3), we
obtain

(4.5) C2

¨
K×K

∣∣∣∣dK(x)s − dK(y)s

dK(x)s + dK(y)s

∣∣∣∣p (|u(x)|p + |u(y)|p) dx dy

|x− y|N+s p
≤ C3

[
|u|
]p
W s,p(RN )

.

To obtain (4.5), we also took the limit as ε goes to 0 and used Fatou’s Lemma. We observe
that by symmetry, we have
¨
K×K

∣∣∣∣dK(x)s − dK(y)s

dK(x)s + dK(y)s

∣∣∣∣p (|u(x)|p + |u(y)|p) dx dy

|x− y|N+s p

= 2

¨
K×K

∣∣∣∣dK(x)s − dK(y)s

dK(x)s + dK(y)s

∣∣∣∣p |u(x)|p dx dy

|x− y|N+s p

≥ 2

ˆ
K

(ˆ
{y∈K : dK(y)≤dK(x)}

∣∣∣∣dK(x)s − dK(y)s

dK(x)s + dK(y)s

∣∣∣∣p dy

|x− y|N+s p

)
|u(x)|p dx.
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We now use the pointwise inequality (A.2), so to obtain¨
K×K

∣∣∣∣dK(x)s − dK(y)s

dK(x)s + dK(y)s

∣∣∣∣p (|u(x)|p + |u(y)|p) dx dy

|x− y|N+s p

≥ sp

2p−1

ˆ
K

(ˆ
{y∈K : dK(y)≤dK(x)}

|dK(x)− dK(y)|p

|x− y|N+s p
dy

)
|u(x)|p

dK(x)p
dx.

By using this in (4.5) and then applying the expedient estimate of Proposition 2.5, we end
up with

sp C
1− s

ˆ
K

|u|p

ds pK
dx ≤ [u]p

W s,p(RN )
,

where we have used the triangle inequality to replace the seminorm of |u| with that of u.
This concludes the proof.

Case 2: general convex sets. We now take K 6= RN an open unbounded convex sets.
For every R > 0 we set KR = K ∩BR(0). Let us take u ∈ C∞0 (K), then for every R large
enough, we have u ∈ C∞0 (KR) as well. By using the previous case, we then get

sp C
1− s

ˆ
K

|u|p

ds pKR
dx =

sp C
1− s

ˆ
KR

|u|p

ds pKR
dx ≤ [u]p

W s,p(RN )
.

By observing that dKR ≤ dK , we then get the desired conclusion.

Remark 4.1. A closer inspection of the proof of Theorem 1.1 reveals that the constant C
appearing in (4.6) is given by

C =
C1

2p−1

C2

C3
,

where C1 = C1(N, p) is the constant of Proposition 2.5, and C2, C3 (which depend only on
p) come from Lemma A.5.

4.2. Improved constant for s close to 0. By means of elementary geometric consid-
erations, we can prove a Hardy inequality with a constant having the correct asymptotic
behaviour as s goes to 0. This is the content of the next result, whose proof is essentially
contained in [5, pages 440–441], as pointed out to us by Bart lomiej Dyda.

Proposition 4.2. Let 1 < p <∞ and 0 < s < 1. Let K ⊂ RN be an open convex set such
that K 6= RN . Then for every u ∈ C∞0 (K) we have

(4.6)
C

s

ˆ
K

|u|p

ds pK
dx ≤

¨
RN×RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy,

for an explicit constant C = C(N, p) > 0.

Proof. For every x ∈ K, we take x0 ∈ RN \K such that |x− x0| = 2 dK(x). Then we can
estimate¨

RN×RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy ≥

ˆ
K
|u(x)|p

(ˆ
(RN\K)\BdK (x)(x0)

dy

|x− y|N+s p

)
dx.
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Figure 3. The set Kx in the proof of Proposition 4.2.

We observe that for every y ∈ RN \BdK(x)(x0), we have

|x− y| ≤ |x− x0|+ |x0 − y| = 2 dK(x) + |x0 − y| ≤ 3 |x0 − y|.

By convexity, we have that (see Figure 3)

Kx := {y ∈ RN \BdK(x) : 〈y − x0, x− x0〉 < 0} ⊂ (RN \K) \BdK(x)(x0).

By joining the last two informations, we get¨
RN×RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy ≥ 1

3N+s p

ˆ
K
|u(x)|p

(ˆ
Kx

dy

|x0 − y|N+s p

)
dx

=
1

3N+s p

(ˆ
{ω∈SN−1 : 〈ω,e1〉<0}

dHN−1

) ˆ +∞

dK(x)
%−1−s p d%

×
ˆ
K
|u(x)|p dx

=
N ωN

2 · 3N+s p · p
1

s

ˆ
K
|u|p dx.

This concludes the proof. �

Appendix A. Some pointwise inequalities

We collect here some pointwise inequalities needed throughout the whole paper. The
most important one is Lemma A.5. We recall the notation

Jp(t) = |t|p−2 t, for t ∈ R.
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Lemma A.1. Let 1 < p <∞, for every a, b > 0 we have

Jp(a− b)
(

1

bp−1
− 1

ap−1

)
≥ (p− 1) | log b− log a|p.

Equality holds if and only if a = b.

Proof. This is proved in [3, Lemma A.2 & Remark A.3]. �

Lemma A.2. For every a, b > 0 we have

|a− b|
a+ b

≤ | log a− log b|.

Equality holds if and only if a = b.

Proof. We observe that if a = b there is nothing to prove. We then take a 6= b and without
loss of generality we can suppose a > b. The seeked inequality is then equivalent to

a− b
a+ b

≤ log
a

b
, for 0 < b < a.

By setting t = b/a, this in turn is equivalent to prove that

1− t
1 + t

≤ − log t, for 0 < t < 1.

By basic Calculus, it is easily seen that the function

ϕ(t) = log t+
1− t
1 + t

,

is strictly increasing for t ∈ (0, 1) and ϕ(1) = 0. This gives the desired conclusion. �

Remark A.3. By combining Lemma A.1 and A.2, we also obtain

(A.1) Jp(a− b)
(

1

bp−1
− 1

ap−1

)
≥ (p− 1)

∣∣∣∣a− ba+ b

∣∣∣∣p ,
for every a, b > 0 and 1 < p <∞.

Lemma A.4. Let 0 < s < 1, then for every a, b > 0 we have

(A.2)
|as − bs|
as + bs

≥ s

2

|a− b|
max{a, b}

.

Proof. For a = b there is nothing to prove. Without loss of generality, we can assume
a > b. By defining t = b/a ∈ (0, 1), inequality (A.2) is equivalent to prove

1− ts

1 + ts
≥ s

2
(1− t).

We observe that by the “below tangent” property of concave functions, we have

ts ≤ 1 + s (t− 1) i. e. 1− ts ≥ s (1− t).
By combining this with the trivial estimate 1 + ts ≤ 2, we get the conclusion. �
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An essential ingredient in the proof of our main result has been the following pointwise
inequality.

Lemma A.5 (Fundamental inequality). Let 1 < p <∞ and let a, b, c, d ∈ R, with a, b > 0
and c, d ≥ 0. Then there exist two constants C2 = C2(p) > 0 and C3 = C3(p) > 1, such
that

(A.3) Jp(a− b)
(

cp

ap−1
− dp

bp−1

)
+ C2

∣∣∣∣a− ba+ b

∣∣∣∣p (cp + dp) ≤ C3 |c− d|p.

Proof. We observe that for a = b there is nothing to prove, since the left-hand side vanishes.
Without loss of generality, we can assume a > b. Also notice that if c ≤ d, then

(a− b)p−1

(
cp

ap−1
− dp

bp−1

)
≤ (a− b)p−1

(
dp

ap−1
− dp

bp−1

)
= −dp (a− b)p−1

(
1

bp−1
− 1

ap−1

)
≤ −(p− 1) dp

∣∣∣∣a− ba+ b

∣∣∣∣p ≤ −(p− 1)
cp + dp

2

∣∣∣∣a− ba+ b

∣∣∣∣p ,
where in the second inequality we used (A.1). Thus inequality (A.3) holds with C2 =
(p− 1)/2 and C3 > 0 arbitrary.

We assume now that a > b and c > d, then by setting

t = b/a ∈ (0, 1) and A = d/c ∈ [0, 1),

inequality (A.3) is equivalent to

(A.4) (1− t)p−1

(
1− Ap

tp−1

)
+ C2

(
1− t
1 + t

)p
(1 +Ap) ≤ C3 (1−A)p,

with t ∈ (0, 1) and A ∈ [0, 1). We study the function

(A.5) Φ(t) = (1− t)p−1

(
1− Ap

tp−1

)
, t ∈ (0, 1),

which is maximal for t = A. This in particular implies1

(A.6) (1− t)p−1

(
1− Ap

tp−1

)
≤ (1−A)p.

We now distinguish two cases:

either 0 ≤ A ≤ 1

2
or

1

2
< A < 1.

1We observe that this is equivalent to

Jp(a− b)

(
cp

ap−1
− dp

bp−1

)
≤ |c− d|p,

which is a discrete version of Picone’s inequality, see [2, Proposition 4.2].
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A. Case 0 ≤ A ≤ 1/2. This is the simplest case. Indeed, we have

1− t
1 + t

≤ 1 and (1−A)p ≥ 1

2p
.

Thus by using this and (A.6), we get

(1− t)p−1

(
1− Ap

tp−1

)
+
C3 − 1

2p+1

(
1− t
1 + t

)p
(1 +Ap) ≤ C3 (1−A)p,

which is (A.4) with C2 = (C3 − 1)/2p+1 and C3 > 1 arbitrary.

B. Case 1/2 < A < 1. Here in turn we consider two subcases: A ≤ t and 0 < t < A.

B.1. Case 1/2 < A < 1 and t ≥ A. This is easy, since we directly have

(1− t)p ≤ (1−A)p,

and thus (
1− t
1 + t

)p
≤ (1− t)p ≤ (1−A)p.

By using this and (A.6), we get

(1− t)p−1

(
1− Ap

tp−1

)
+
C3 − 1

2

(
1− t
1 + t

)p
(1 +Ap) ≤ C3 (1−A)p,

which is (A.3) with C2 = (C3 − 1)/2 and C3 > 1 arbitrary.

B.1. Case 1/2 < A < 1 and 0 < t < A. Here we need to study in more details the
function Φ defined in (A.5). We have

Φ′′(t) = (p− 1) (1− t)p−3

[
p− 2 + 2

Ap

tp
− p Ap

tp+1

]
= (p− 1) (1− t)p−2

[
p− 2

1− t

(
1− Ap

tp

)
− p Ap

tp+1

]
, t ∈ (0, 1).

By an easy computation, we can see that

t 7→ p− 2 + 2
Ap

tp
− p Ap

tp+1

is monotone increasing, thus we get

Φ′′(t) ≤ (p− 1) (1− t)p−3 p

(
1− 1

A

)
, for 0 < t < A.
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In particular, we get that Φ is concave on the interval (0, A). We use a second order Taylor
expansion around the maximum point t = A, i.e.

Φ(t) = Φ(A) +

ˆ A

t
Φ′′(s) (s− t) ds

= (1−A)p

+ (p− 1)

ˆ A

t
(1− s)p−2

[
p− 2

1− s

(
1− Ap

sp

)
− p Ap

sp+1

]
(s− t) ds,

(A.7)

where we used that Φ′(A) = 0. In order to estimate the remainder term inside the integral,
we distinguish once again two cases:

• if 1 < p ≤ 2, then by using Lemma A.7 below and the fact that A ≥ 1/2, we getˆ A

t
(1− s)p−2

[
p− 2

1− s

(
1− Ap

sp

)
− p Ap

sp+1

]
(s− t) ds

=

ˆ A

t

[
(p− 2)

sp −Ap

1− s
− p A

p

s

]
(1− s)p−2

sp
(s− t) ds

≤ −p (p− 1)

2p

ˆ A

t

(1− s)p−2

sp
(s− t) ds

≤ −p (p− 1)

2p
(1− t)p−2

ˆ A

t
(s− t) ds

= −p (p− 1)

2p+1
(1− t)p−2 (A− t)2.

By using the previous estimate in (A.7), we have

(A.8) (1− t)p−1

(
1− Ap

tp−1

)
≤ (1−A)p − p (p− 1)2

2p+1
(1− t)p−2 (A− t)2.

It is now sufficient to observe that

(1− t)p = (1− t)p−2 (1− t)2

≤ (1− t)p−2
(

2 (A− t)2 + 2 (1−A)2
)

≤ 2 (1− t)p−2 (A− t)2 + 2 (1−A)p

and thus

(A.9) C2

(
1− t
1 + t

)p
(1 +Ap) ≤ 4C2 (1− t)p−2 (A− t)2 + 4C2 (1−A)p.

If we sum up (A.8) and (A.9) and choose

C2 =
1

4
min

{
C3 − 1,

p (p− 1)2

2p+1

}
,

we get again the desired conclusion (A.4), with C3 > 1 arbitrary.
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• if p > 2, then
ˆ A

t
(1− s)p−2

[
p− 2

1− s

(
1− Ap

sp

)
− p Ap

sp+1

]
(s− t) ds

≤ −pAp
ˆ A

t

(1− s)p−2

sp+1
(s− t) ds

≤ − p

2p

ˆ A

t
(1− s)p−2 (s− t) ds.

The last integral can be explicitly computed: we have
ˆ A

t
(1− s)p−2 (s− t) ds = − 1

p− 1
(1−A)p−1 (A− t) +

1

p (p− 1)
(1− t)p

− 1

p (p− 1)
(1−A)p.

We use Young’s inequality to estimate the first term on the right-hand side

− 1

p− 1
(1−A)p−1 (A− t) ≥ − p

(p− 1)2
ε
− 1
p−1 (1−A)p

− ε

p (p− 1)
(A− t)p,

with ε > 0. We use these estimates in (A.7). This in turn gives

(1− t)p−1

(
1− Ap

tp−1

)
≤ (1−A)p +

p2

2p (p− 1)
ε
− 1
p−1 (1−A)p

+
ε

2p
(A− t)p

− 1

2p
(1− t)p +

1

2p
(1−A)p.

By choosing ε = 1/2 and using that A− t ≤ 1− t, we then obtain

(1− t)p−1

(
1− Ap

tp−1

)
≤ C3 (1−A)p − 1

2p+1
(1− t)p,

with

C3 = 1 +
p2

2p (p− 1)
2

1
p−1 +

1

2p
.

Once again, this is enough to get the desired conclusion, since

C2

(
1− t
1 + t

)p
(1 +Ap) ≤ 2C2 (1− t)p.

Then we only need to choose C2 = 1/2p+2 in order to get (A.4).

We thus concluded the proof. �
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Remark A.6. Inequality (A.3) looks similar to the pointwise inequality which can be
found right before [7, equation (3.12), page 1289], where the term∣∣∣∣a− ba+ b

∣∣∣∣p (cp + dp),

is replaced by

|log a− log b|p min{cp, dp}.
The main difference is that our inequality is symmetric in the terms c and d, which is a
crucial feature in order to prove Theorem 1.1. On the other hand, the inequality in [7] can
not have this property and thus it is not useful in order to prove Hardy inequality.

In the previous result, we needed the following inequality in order to deal with the case
1 < p ≤ 2.

Lemma A.7. Let 1 < p ≤ 2, for every s ∈ (0, 1) and A ∈ [0, 1] we have

(p− 2)
sp −Ap

1− s
− p A

p

s
≤ −p (p− 1)Ap.

Proof. We rewrite

(A.10) (p− 2)
sp −Ap

1− s
− p A

p

s
= (2− p) A

p − sp

1− s
− p A

p

s
.

We then observe that

(A.11)
Ap − sp

1− s
≤ pAp.

Indeed, the latter is equivalent to

Ap (1− p+ s p) ≤ sp,
which is easily seen to be true. By using (A.11) in (A.10), we now obtain

(p− 2)
sp −Ap

1− s
− p A

p

s
≤ (2− p) pAp − p A

p

s
≤ −p (p− 1)Ap,

as desired. �
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